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ABSTRACT 

The cross square rule for mixed salt solutions is derived using the formalism described by 
Guggenheim [Trans. Faraday Sot., 62 (1966) 34461 by reference to the thermodynamic 
properties of six composite salts formed by four reciprocal salt pairs. Contributions to excess 
molar Gibbs functions of these salt solutions are described in terms of pairwise interaction 
parameters. Conditions are enumerated under which the cross square rule is and is not 

obeyed. 

INTRODUCTION 

Within the context of the thermodynamic properties of aqueous salt 
solutions, a most interesting pattern centres around the cross square rule 
(CSR) [1,2]. Originally discovered with respect to the enthalpies of mixing 
[3,4], CSR was later shown to apply to Gibbs functions [5] and volumes [6] 
of salt solutions. Several authors have discussed the CSR using different 
models for mixed aqueous salt solutions. The most widely quoted explana- 
tion is offered by Reilly and Wood [7] who based their explanation on the 
formalism suggested by Friedman [8]. Reilly and Wood commented [7] on 
the stoichiometries of the salts forming the aqueous solution and on the 
conditions demanded if the CSR is to be obeyed. These conditions refer to 
the symmetry of the charges forming the four salts (see below). Another 
explanation of the CSR was given by Guggenheim [9] with reference to the 
Gibbs functions for a square formed by 1 : 1 salts. Lilley made comments 
[lo] on the extension of the same argument to volumes and enthalpies of 
mixing for 1 : 1 salts. In the following section we extend the procedures 
described by Guggenheim [9] to salts having more complicated stoichiome- 
tries. The treatment describes mixed salt solutions as composite salts along 
the lines discussed previously [ll]. 
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ANALYSIS 

Composite salt 

A given salt solution is prepared by mixing two solutions containing the 
salts (1) v~~)M’(~)v$)X’(~) and (2) v,(~)N~(~)v~(~)X~(~). Thus salt-l and salt-2 
have common anions X”“’ although one mole of salt-l contains v:‘) moles 
of X”“’ and one mole of salt-2 contains vJ2’ moles of X”“’ ions, z(x) being 
the charge number. The molalities of the individual salt solutions are my 

and rni. The mixed salt solution contains 1 kg of water prepared by mixing 
solutions of salt-l and salt-2 containing y kg and (1 - y) kg of water 
respectively. In these terms the final solution contains the composite salt 
y . r@M =Crn) (1 -jJ) * ng &9Nz(“) [Y. @ + (1 AY). vX(~)]X’(~), having molality 
m=y*m,O+(l-y).m,. This solution in 1 kg of water contains y - ~2). my 
moles of M”“‘, (1 - y) . v,‘~’ - rn! moles of N”“’ and { y . vx(‘) . rnf + (1 - y) . 

vc2) . rni } moles of X”“’ ions. x 

Ionic strength 

Ionic strengths of aqueous solutions containing salt-l and salt-2 are given 
in the following equations 

1(l) = (l/2) . [ ~2’. m,O - zk + v,“‘. rnf. z:] (1) 

1(2) = (l/2) - [vi”. my . z,’ + vJ2’ . rn!. z,2] (2) 

Similarly the ionic strength of the composite salt solution, 1(1,2) is given by 

1(1,2) = (l/2). [y.~~~‘.rn,O.z~ +y~vx(“.m~~z,2 + (1 -y) .v,‘Z’.rni.z,2 

Then 

+(l -y) .v:‘)+rn,O.z,2] (3) 

1(1,2) =v.l(l) + (1 -J+1(2) (4 

A condition which applies throughout the remainder of this paper re- 
quires that the ionic strengths of all salt solutions considered here are set at 
some predetermined ionic strength 1’. Consequently the molalities of salt-l 
and salt-2 in their separate solutions are determined by this condition. 
Moreover the ionic strength of the solution containing the composite salt is 
fixed, i.e. 1(l) = 1(2) = 1(1,2) = 1’. (In the event that salt-l and salt-2 are 
1 : 1 salts, then my = rn: = m.) Therefore the ionic strength is constant for all 
fractions y where 0 <y < 1.0. 

Gibbs function 

We express the excess Gibbs function for a salt solution in 1 kg of water, 
GE(aq;T;p) in terms of electrical and cosphere [12] contributions, GE(elect) 
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and GE(cosph) respectively. Thus GE(elect) describes the contribution aris- 
ing from charge-charge interactions. GE(elect) can be estimated using the 
Debye-Htickel Limiting Law, DHLL for both simple and mixed salt solu- 
tions. A “DHLL solution” is analogous to the “standard electrolyte” 
defined [9] by Guggenheim. Moreover GE(aq;DHLL;T;p) { = GE(elect)} 
for salt solutions is constant [13] at constant ionic strength. We assume that 
in real salt solutions the contribution GE(cosph) to GE(aq; T; p) is determined 
by pairwise cosphere-cosphere interactions; i.e. cation-cation, anion-anion 
and cation-anion. Here we extend the procedures used by Savage and Wood 
[13] for apolar solutes to the description of cosphere interactions between 
ions [14]. Thus for salt-l in an aqueous salt solution of molality rnf, the 
cosphere interaction contribution to the excess Gibbs function at ionic 
strength I’, GE(cosph;l;Zo) is given by 

GE(cosph;l;Zo) = 

Here g,, is the pairwise Gibbs function interaction parameter describing 
interactions between cospheres of M’(“‘) and MzCm) ions in aqueous solu- 
tion. Similarly g,, describes interactions between cospheres associated with 
M”“’ and X”“’ ions. For an aqueous solution of salt-2, GE(cosph;2;Zo) is 
given by 

GE(cosph;2; Z”) = 

g,; {vj”-rni}’ 

+ 2 . g,, . { v,‘~’ . rni . v:~’ . rni } + g,, - { v.z2’ . rn; 

As noted above, my and rnt are defined by the stoichiometries and 
charge numbers, and by the condition of constant ionic strength, I’. 

Composite salt 

Following the procedures which produced eqns. (4) and (5) 
GE(cosph;l,2;Zo) for the composite salt-l,2 is given in Table 1. The equa- 
tion takes account of the fact that each ion interacts with each and every 
other ion in solution. For clarity we set out these equations in a form 
resembling the lower left hand part of a matrix. The terms in the equation 
are regrouped in Table 2 which incorporates eqns. (5) and (6). A curve 
generated by a plot of GE(cosph;l,2;Z0) against y (at constant Z”) is 
parabolic having intercepts GE(cosph;l; Z”) at y = 0 and GE(cosph;2; Z”) at 
y = 1. One approach at this stage defines double excess functions based on 
the equation in Table 2, e.g. AG”(cosph;l,2; Z”) =y . (1 - y) . my. m(: . { g,, 
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TABLEI 

GE(cosph;L2; 1') for composite salt-l,2 

Salt =yhz’,$?.MiCm) (I-y).z+Jz”” {y.@ +(I._ y).v~2f~~~(~) 

GE(cosph;l,2;Z0) = 

g#n?II . { $1. &$}2 
f2.g,,.~v~‘.m~.y.v,(2). m;-fl- y)} + g,; {(I - y).M;* v,‘““}’ 
+2.g,,.{~~~~.M~.,~}.(~~~~.,:,.yf(l-y).v~~~.m~) 

“2~g,,*{v,‘2’* m~~(l-y)}.{y*v,“‘.m,O+(l-y).v~~~.*~} 
+&‘{v;“‘mp.y i- v;2’.Iy;.(l-y))2 

TABLE 2 

GE(cosph;l,2;Zo)S GE(cosph;l;Zo) and GE(cosph;2;Z0) 

GE(cosph;l,2; Z”) = 
(y.m~)2.GE(cosph;l;Zo) 

+y.m~.fl-y).m~.(2.gmn.~(l)~~nf~)+2.g,x.~~).~.~~~+g,,.v,(2)~xf*)~ 

+(l- y)z+&2~GE(cosph;2;?Zo) 

. &l’. p;2’ + g,, . p(J). pm + g,, * v;2’. x . y(i) In practice, another approach is 
adopted which forms the starting point for the CSR. In effect a solution of 
salt-l in y kg of water is mixed with a solution of salt-2 in (1 - y) kg of 
water. Bearing in mind that G”(elect) is unchanged at constant I*, then we 
assume that no interactions occur between cospheres associated with ions of 
salt-l and cospheres associated with ions of salt-2. The equation in Table 3 
is written in a form which emphasises this point. The corresponding contri- 
bution to G”(aq) namely GE(cosph;l,2;Io;id) is ideal. The case commonly 
considered is composite salts where y = 0.5. The equation for 
G”(cosph;l,;Z;I*;id), Table 3, can be compared with the equation given in 
Table 4 for GE(cosph;l,2;1’) for a real solution at y = 0.5. The difference 
between these two Gibbs functions defines a mixing property, 
A,;,GE(aq;l,2; 1’) 

A,i,GE(aq;l,2;1*) = G (cosph;l,2;1*) - GE(cosph;l,2;Io;id) 

= GE(aq;l,2;Io) - GE(aq;l,2;Io;id) (7) 
The second condition in eqn. (7) emerges because G(elect; 1’) is constant. 

TABLE 3 

Functions of mixing; ideal 

GE(cosph;l,2; Z’;id) = 

&w. (4,“. 4 12/2 
+2.g,,.{~~~‘-M~}.{~~‘~.,~}/24g,,~{v~”.m!:}2/2 

+ g,; ( 42). n#/2 
-t-2.gnx.(v~2).m~}.{v~2).m~)/2 +g,,v.{v,‘2’.111~)2/2 
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TABLE 4 

A,,GE(1,2;Zo) 

From eqn. (7) and Tables 1 and 3 

AmixGE(aq;l,2;Zo) = 

g,,.[-(1/4).(v~).m~)21 
+2-g,..[(1/4).(v~‘.m~.v,~).m0,)]+g,..[-(1/4).(v,(2).m0,)2] 
+2.g,,.[(1/4).(-v~‘.m~.v!‘).m~+v~).m~.v,2).moz)] 
+2.g,,.[(1/4).(v,‘Z’.m~.v~‘).m~)-(1/4).(v,2).m~.v!2).m0,)] 

+ g,;[ -(l/4). { If’. Pn?}’ 
+(1/2)~{v~“~m~~v,(2~~m0,}-(1/4)~{v,2~~m0,}2] 

Reciprocal salt pairs 

The significance of the equation in Table 4 emerges from a consideration 
of the systems defined in Fig. 1. Four simple salts, salt-l, salt-2, salt-3 and 
salt-4, are described at the comers of a square leading to the specification of 
six composite salts, i.e. salt-1,2, salt-2,3, salt-3,4, salt-1,4, salt-2,4 and salt-1,3. 
The four reciprocal salt pairs at the vertices are formed from four ions 
M”“’ , N , U”“‘, r(n) and X2’“‘. The analysis outlined in the previous sections 
refers to the composite salt-l,2 formed from salt-l and salt-2. Equations 
similar to those in Table 4 are obtained from salt-2,3, salt-3,4 and salt-l,4 
(Tables 5-7). The sum of the mixing functions for the four composite salts 
identified by the square is given in Table 8. 

vm( ’ ‘M 

salt-l salt-l.2 salt-2 

,Z(")v I,),p(x) v (z)Nztn)v t,)xz(x) 
x n 

salt-l,3 

salt-2,3 

v (,‘MZ(m), (,)“Z(U) salt-3.4 
” (,‘Nz(“‘u (,‘“Z(U’ 

n u n " 

salt-4 salt-3 

Fig. 1. Reciprocal salt pairs. 
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TABLE 5 

Composite salt-2,3 

AmixGE(aq;2,3; Z”) = 
g,,.[-(1/4).(v,‘Z).m~)2-(1/4).(v(3).m~)2 

+(1/2).(~~.~~-“~3).m~)] 
+2.g,,.[-(1/4).(v,‘2’.m~.v~Z).m~)+(1/4).(v,(3).m~.v;S2).m~) 

+ g,;{ -(1/4).(v;2’.my] 
+2.g,,.[(1/4).(v,‘2’.m~.v,(3).m~)-(1/4).(v,3).m~.v,‘3).m~)] 

+2.g,,.[(1/4).(v;S2’.mO,.v~3).m~)] 
+g,“.[-(1/4).(V,‘3’.my] 

TABLE 6 

Composite salt-3,4 

TABLE 7 

Composite salt-l,4 

Two composite salts, salt-l,3 and salt-2,4, are formed by mixtures across 
the diagonal of the square. As before we assume that these composite salt 
solutions are prepared using separate solutions each containing 0.5 kg of 
water. The procedures described above are used in the definitions of the 
mixing functions, Ati,GE(aq;2,4; 1’) and A,,GE(aq;l,3; 1’) (Tables 9 and 
10). 

In a key step we obtain the cross term C(cross) as shown in Table 11. The 
final step involves calculating the difference, C(square) minus C(cross), as 
shown in Table 12. If the CSR is valid this difference should be zero. 
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- 

TABLE 10 

Composite salt-2,4 
- 



TABLE 11 

The cross 

DISCUSSION 

It is somewhat surprising that systems as complicated as salt solutions can 
obey the CSR. It is also surprising that a treatment based on pairwise 
interactions between ions should emerge with the required patterns. Thus by 
inspection the somewhat complicated equations in Table 7 identify various 
important characteristics of the CSR. We summarise the conclusions as 
follows: (1) at constant temperature, pressure and ionic strength, the CSR 
only applies to groups of four salts having similar stoichiometries, e.g. 1 : 1, 
2 : 2, and 2 : 1 for salt-l, salt-2, salt-3 and salt-4. (2) The CSR does not apply 
for example to a square formed by salts KCl, K,SO,, Na,SO, and NaCl. 
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Deviations from the CSR depend on the stoichiometries and pairwise 
interaction parameters. Inspection reveals a combination of signs and mag- 
nitudes of these latter parameters which might conspire to highlight in some 
systems and to minimise in other systems deviations for CSR. (3) The CSR 
is a direct consequence of differing solvation characteristics of the ions 
comprising the four salts. These properties play their part in determining the 
magnitude and signs of cosphere-cosphere interaction parameters. (4) The 
CSR applies to solutions which are sufficiently dilute that triplet and higher 
order cosphere interactions can be ignored. In fact these interactions would 
otherwise produce deviations from the parabolic dependence of GE(aq; 1’) 
on salt fraction y for each composite salt solution. 

The foregoing analysis concentrated on the Gibbs function. Clearly the 
formalism is the same for derived variables such as enthalpies and volumes. 
In these terms the procedures outlined [9] by Guggenheim form a sound 
basis for description of systems containing salts having stoichiometries other 
than simple 1 : 1. Nevertheless the obvious challenge is to say something 
about the individual pairwise interaction parameters, e.g. g,,,,, g,,, and g,,. 
We are in the process [12] of tackling this formidable task. 
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